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where
. 6
B(r) = B, exp [— '—ﬂ] B, (“—) :
p r

and Q,, specifies the direction of r;, relative to the
c-axis. The theoretical values of the parameters are
By =2.6K, B, =1.6K,andp = 0.283A;a, = 3.75A
is the nearest neighbor distance in solid H, at P = 0.
For computational simplicity, we retain only the m = 0
part of this interaction and have, upon comparison
with eq. (10),

V2°(1,2) = V°%(1,2) = (£ \/5)n B(r) Py(cos 0;,), (11)

where 0,, is the angle between r{, and the c-axis; P,
is the Legendre polynomial of degree two. There is also
an anisotropic potential proportional to Y,(w,) Y,(w,).
The dominant part of this is the electric quadrupole—
quadrupole (EQQ) interaction which gives

5
V22(1,2) = 20n I’y P4(cos 0 )(ﬁ> (12
) 0o+a 12 r ’ E

where I'y = 1 K. Once again, we neglect terms with
m # 0. Finally, there should also be terms in eq. (10)
proportional to Y, ,(w;) and Y,,(®,); the sum of all
neglected terms is less than about 10%, of ¥2° or V%2
for all molar volumes treated here. In order to be con-
sistent in this regard, we systematically ignore all terms
involving Y,(w,) and Y,(w,) in what follows.

It is interesting to compare the exponential (valence)
part of V,,; in eq. (11) with the corresponding part of
the empirically determined E6 potential. The empirical
constant p, = r,/a = 0.239 A is sufficiently different
from the theoretical p, = 0.283 A to produce consider-
ably different results in the calculations presented be-
low if p, is replaced by p.. We shall comment further
on this point in section 4.

3. Anisotropic formalism

The introduction of V,,; depending on the rotational
state of the molecules produces an admixture of rota-
tional states in the single-particle and correlation func-
tions. When V,; is taken in the form of eq. (10), then

¢ (1) becomes
01 wy) = Yo(w,) @oi(1)+ Yy(@y) @,i(1), (13)

so that we now have two functions ¢,; and ¢,; to
determine. Rotational states with / > 2 are ignored;

this procedure is valid as long as the ‘“‘anisotropy
energy’’ is small compared to the excitation energy of
these states.
Similarly, the single-particle self-consistent field now
takes the form
u(1, wy) = Yo(w,) Yo(@,) ugi(1)+ Yo(w,) Yy(w;) uy(1).
(14)

The Schrddinger equation for the single-particle func-
tion can be written as two equations:

Vlz . . ,
- E +ug; Yoo | @oit+Fuy Yo© @ = € @g;, (152)
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V &
(‘ ﬁ +6B;+ug; Yoz'*‘(% \/5) Ui Y02> P2

+uy; Y02 Poi = € Pais (15b)

where we have used
,Y, =GEV3) Y Yot GE \/5) Y, o+3 Y, Yo,

and Y, has been neglected, which is consistent with our
approach of considering only the / = 0, 2 rotational

states.
The general form of the correlation function

Xij(l9 29 w17 0)2) iS
%1, 25 04, ;) = 4n [X?jo(ls 2) Yo(w,) Yo(w,)
+Xi2j0(1’ 2) Yy(wy) Yo(w,)
+X?jz(1’ 2) Yo(wy) Ysy(w,)

+Xi2j2(1’ 2) Y (wy) Yy(w,)]  (16)

in our approximation. We remark that y;; is part of the
two-particle Green’s function which has been factored
into single-particle and correlation functions. This se-
paration is not unique, and the form of y;; in eq. (16)
is a consequence of our previous treatment (EBNER and
SuNgG, 1971b).

The self-consistent field is given by the same equa-
tion as before

u(l,m,) =

=Z’ f V(1,2) 3:/(1,2; 01, 05) | 92, ®,) |2 dz’r2 dow, .
’ (17

The equation of motion for y;; is similar to eq. (4),

Hijyij0i0; = Ao Lij Pi Pj» (18)
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where J;% and J,? are the internal angular momentum
operators for molecules 1 and 2. The simultaneous
solution of these equations plus the single-particle equa-
tion and the self-consistency condition eq. (17) is a
formidable numerical problem. Since our interest at
this time is primarily to examine the effect of the aniso-
tropic interaction on the energy in the molecular phase
rather than to pursue the question of a transition to the
metallic phase, an expansion procedure will be used.
We keep terms in V,; through second order only. This
means that we should find ¢,; and u,; to first order in
Vi and ¢q; and u,; to second order. If ¢,; is nor-
malized to 1, then each single-particle wave function
should be multiplied by Ni *, where

N, f el dF+ f o3 (1) &r,

i+ [o3dr,. 20)
Also, to maintain the proper normalization of the two-
particle Green’s function, the correlation function
should be divided by N,, where

Ny =142 f [22(1,2) 93(1) 9o,(2) 92,2)

'+Xi210(1,2) (0(2)1'(2) @oi(1) @2i(1)
+157(1,2) 9gi(1) @3] &ry dr,

where we have used

@n

f 12°(1,2) 93(1) @3,2) dry dr; = 1.

The single-particle potential is given to the appropriate
order in V,,; by

up(1) = Z'f i X?i(_) ‘/’.35 Nz-l d’r,
e i

+2%" | v X?jz Poj P2j d’r,

23 it X?jo Poj P2j ds"z

+ 3 [ Voo g 02, dr,
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u(1) = Z' f v X?jo ‘P(z)j d3"2
J

+ Y J. yoo xfjo 02 wiops (23)
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The expression for uy; is correct to second order in

V.ni While u,; is first order. In these equations, correc-

tions to first order in V,,; only are needed in xi’, These

are determined as follows: Eq. (18) is multiplied by

Yo(w,) Yo(w,) and integrated over w; and w, to give

H?,-" x?,-° Poi Poj = 4o )_C?jo Poi Pojs

where H ?,-0 is the operator {...} in eq. (4). Thus x?jo is
just thecorrelation function of EBNER and SUNG (1971a).
Of course, ¢,; differs from the single-particle function
when V,,; is not present, but the difference is second-
order and we shall ignore it. By also multiplying
Y, (@) Yo(@,), Yo(w,) Yy(w,) and Y,(w,) Y,(w,) into
eq. (18) and integrating over w; and w,, we obtain
three equations for the anisotropic part of the correla-
tion function,

Hf’,-° thjo @oi Poj+6B; XIzjo Poi Po;+6 By l?jo ?2i Poj
+H?* X?jo ©oi Poj = 4o Xizjo Poi Poj» (24)
HYY 107 00 00;+6 By 2if Poi Poj+6 By xiy Poi Pa;
+H? 217 00i @oj = 4o Xij Poi o; (25)
and
HY 157 00i 00;+12 By i o Poj
+H?? 17 001 Poj = 40 2if Poi oj» (26)
where '
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